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ABSTRACT
Bitcoin remains the heart of the crypto economy, yet its poor programmability
and scalability have capped its potential. Enter Charms — a revolutionary
protocol that “enchants” Bitcoin, enabling programmable and portable assets
natively on its ledger. These assets are chain-agnositc, and can be seamlessly
“beamed” to various other UTXO blockchains, allowing them to live natively on
any integrated chain. Leveraging client-side validation of recursive zkVM proofs,
Charms eliminates the need for bridges, trusted validators, or transaction graph
traversal. The result: truly decentralized, client-side validated smart assets that
inherit Bitcoin’s security while transcending its limitations. Inspired by Bitcoin’s
pioneering metaprotocols and Cardano’s eUTXO model, Charms is a tesseract
representing the first post-chain standard able to integrate builders and users with
the existing dapp ecosystems of more scalable chains beyond Bitcoin. This is the
end of wrapped tokens and the beginning of Bitcoin’s full integration into the

programmable Web3 economy.




1 Introduction

Bitcoin (1) emerged as a beacon of freedom - the first peer-to-peer digital money system that
could liberate humanity from the control of central banks and financial intermediaries. The
network’s stability and decentralization have allowed it to prosper as “digital gold,” growing
into a $2T juggernaut at the heart of the crypto economy.

However, the very permanence that makes Bitcoin valuable has also been its curse. Its inflexible
design and cultural resistance to change left it unable to deliver on its full revolutionary
potential. Its limitations in scalability, privacy, and programmability drove developers to spawn
an entire parallel ecosystem of competing chains and tokens seeking greater decentralized
functionality. But in doing so, these projects cut themselves off from Bitcoin’s unmatched
security, repute, network effects, and massive capital base. The result is a fragmented crypto
landscape divided between Bitcoin’s rock-solid foundation and an innovative but siloed world
of decentralized applications - each unable to benefit from the other’s strengths.

Thankfully, several years of advancements in both UTXO technology and zero-knowledge
cryptography have assembled the pieces to an entirely new paradigm for augmenting the
motherchain, while melting its borders between the wider Web2 and Web3 worlds.

That paradigm is called Charms — a programmable, portable, and developer-friendly app
protocol for Bitcoin. Charms opens Bitcoin to all manner of crypto innovation, including
fungible tokens, NFTs, lending protocols, DEXes, and more — all powered by Bitcoin and
without sacrificing decentralization.

This protocol enables the first digital assets that simultaneously satisfy three important

qualities:

o They have the same direct ownership as Bitcoin (can be sent to a Bitcoin address as a Bitcoin
transaction output).

e They are programmable in ways that appeal to mainstream developers — using general
purpose languages, like TypeScript or Rust.

e They can be transferred across chains and used in any ecosystem while maintaining their
smart contract logic, without needing wrapped tokens or fragile bridges.

Charms are “unchained” because their state is verified by recursive zk-proofs, not in any single
ledger, so they can materialize natively on whatever chain hosts the proof — no locks, no bridges,
no custodians. Charms transcend blockchains as we know them today. This makes them not just
a theoretical boon for the Bitcoin ecosystem, but a highly practical pathway to bootstrapping
an advanced economy of Bitcoin tokens, which can leverage successful infrastructure already
present on other chains. One of those chains is Cardano — the first key technology that informed
the creation of Charms.

2 Precursors

2.1 Cardano
Cardano demonstrated that the UTXO model is, in fact, programmable — and has been for a
long time.

Cardano pioneered the eUTXO (Extended UTXO) model (2, 3), in which

o Multiple assets exist in a transaction output,
 the output also holds a piece of arbitrary data (called datum), and



o the output can be spent by a transaction that satisfies a predicate (encoded in Plutus
Script, a Cardano native bytecode level language) by presenting another piece of data (called
redeemer).

We discuss improvements over Cardano’s smart-contract design below (in ToAD — an
Extended Extended UTXO Model).

2.1.1 Extended UTXO Model

The Cardano blockchain pioneered the approach: the eUTXO model allows storing in
transaction outputs not just ADA (the system native token in Cardano), but also user
created Cardano native tokens (called so because the Cardano ledger natively enforces token
preservation, just like for ADA, without invoking smart-contracts). Cardano transaction outputs
can also contain datum — a piece of arbitrary data, effectively a smart-contract state associated
with the output. So, a Cardano UTXO can contain:

o an amount of ADA (required)
o any amounts of any tokens (optional)
o datum (optional)

Spending scripts (smart contracts) have the following signature:

fn spend(
datum: Option<Data>,
redeemer: Data,
utxo: OutputReference,
tx: Transaction,

) -> bool

For a transaction to be able to spend outputs locked in such script, Cardano nodes will have
to run the script for each such output.

If the script is implemented naively, a transaction trying to trade multiple outputs, each for
the same amount of Ada, might result in a single output mistaken as the payment for each
individual traded item — this is known as the double satisfaction problem (4, 5). The solution
is to look at the whole transaction (all spent and created outputs), effectively running the exact
same computation as many times as there are outputs spent from the smart contract.

There are other script types in Cardano (6), which don’t look at individual outputs and run
only once per transaction (if needed, e.g. if an asset is minted, the asset’s mint script is run).

2.2 Ordinals and Runes
Upon popularizing in early 2023, Bitcoin metaprotocols like Ordinals and Runes reimagined
how we can build on Bitcoin. They demonstrated that:

e Arbitrary size data can be put into a Bitcoin transaction,
o Digital assets can be created fully on Bitcoin and sent over to a Bitcoin address
o C(lient side validation is a practical way to extend Bitcoin without changing Bitcoin itself

Charms would not exist without Ordinal or Runes. However, they also wouldn’t exist if these
standards were already programmable. Without programmability, advanced token applications
such as Bitcoin IDs and yield bearing stablecoins remain out of reach.



2.3 zkVM Technology

zkVMs (Zero Knowledge Virtual Machines) enable developers to write provable programs in
general purpose programming languages (like Rust) and generate succinct (zkSNARK) proofs
of their execution. This allows for verifiable computation without revealing the underlying data,
enhancing privacy and scalability in blockchain applications.

Prior to zkVMs (effectively, until 2024 when zkVM projects started releasing to production),
ZK proofs could only be generated by running specially formatted input data (data items would
have to be elements of a large finite scalar field) through so called ZK circuits — specially
constructed programs with a single fixed length execution path (for example, branching logic
has to be emulated).

zkVMs were the missing piece of infrastructure that made Charms much easier to build, allowing
Charms apps to be written in Rust (vs ZK circuits) and proven within tolerable time (seconds
to minutes — depending on the app complexity) and verified in milliseconds.

2.4 ToAD — an Extended Extended UTXO Model
Charms started as ToAD (Tokens as App Data) (7) — a fresh take on an Extended UTXO
model.

ToAD was proposed as an improved ledger model for zkBitcoin (8). A transaction involving
zkBitcoin apps (“zkapps”) would have to satisfy a validation predicate with a signature

F': (ins, outs, z, w) — Bool

where:

e ins — set of outputs spent by the transaction,

e outs — set of outputs created by the transaction,

e x — public redeeming (or spending) data necessary to validate the transaction (a great
example would be a set of spending signatures).

e w — private witness data necessary to validate the transaction (e.g. pre-images of hashes in
the public data).

Each zkapp UTXO should have
e a map of: validation predicate — state data
» e.g. token policy — amount:
-1, = a
- T, = ay
— T3 — ag
» e.g. smart-contract validator — smart-contract data
-8, —=d
- Sy = d,

If a zkBitcoin transaction spends or creates any number of zkapp UTXOs, then all validation
predicates used in those UTXOs need to be satisfied to validate a transaction.

ToAD was an attempt to introduce a token model, (1) enjoying the benefits and (2) avoiding
the problems of Cardano eUTXO, and (3) do it on Bitcoin.

Charms applies minor changes to ToAD to level up the eUTXO model: from extended UTXO
to enchanted UTXO.
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3 Techniques

3.1 Charms UTXO Model
The ToAD model, with minor changes, is adopted by Charms. Charms app contracts have the
following shape:

F : (app, tx, x, w) — Bool

In Charms,
e app contracts use tx (the whole transaction, listing ins and outs),
» ins, outs are lists of UTXOs
» UTXOs are
— identified by UTXO ID (256-bit byte string + integer index), and
— contain charms: map App — Data, where each individual entry app - data is called
a charm.
e app itself is an argument to the app contract — it has
» the vk — verification key,
» identity — useful when the same contract can power multiple assets / apps, and
» tag — a single character (with two values having special meaning, but free to be
used otherwise).

Data must be an unsigned integer (u64) for fungible token assets (apps with tag == TOKEN),
arbitrary data otherwise.

Outputs (UTXOs) can be created (by transactions) and then spent (by other transactions) —
these are the only two states of Charms outputs, just like in the underlying UTXO ledger.



Now, because outputs can contain multiple charms bound together (we call them strings of
charms), and they are passed to app contracts as such, it allows for composability of apps. For
example, an order-book exchange app data would be a limit order, specifying the quote token
and the minimum price for a base token in the same output.

Charms UTXO model achieves all design goals of ToAD and it can potentially add support for

any underlying UTXO-based ledger, relying solely on the client and the underlying blockchain

(without need to trust anyone). This ability to move across chains is powered by:

 the abstract nature of the Charms ledger model (designed to be a layer on top of a UTXO
ledger),

e recursive zkVM proofs.

3.2 Recursive zkVM Proofs

Charms client library doesn’t need to traverse the transaction history. All it needs to make
sure a transaction has correct Charms metadata (we call such metadata a spell) is a succinct
(Grothl16 (9)) zkVM proof.

Spell proof in a transaction attests to the following statements being true:

(i) All pre-requisite transactions indeed produced the charms in their outputs: their spell proofs
are correct.

(ii) All Charms app contracts in this transaction are satisfied: their proofs are correct.

Therefore, if we're looking at a Bitcoin transaction included in a block (which happens to be a

part of the main chain) with a correct Charms spell, we know two facts about it:

(i) It is spending and creating legitimate outputs — ensured by Bitcoin consensus.

(ii) Charms spent and created by the transaction are legitimate — as attested by the zkVM
proof.

So, all it takes to know that Charms in transaction outputs are legitimate, is read the spell and
verify the associated Grothl6 proof: all the necessary data is available in the transaction (and
nowhere else).

This makes every client a Charms validator, even if it is a web or a mobile app.

3.3 Client Side Validation

This is precisely what every Charms client is doing. The underlying blockchain requirements
still apply, so the client needs to talk to a Bitcoin node to be able to get transactions creating
the client’s Bitcoin outputs. To read what Charms are in these outputs, the client reads the
spells and verifies proofs (in the transactions creating those outputs).



4 Charms Data Model
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4.1 App Contracts

Charms exist to make programmable assets possible on Bitcoin. Put simply, Charms are
programmable tokens on top of Bitcoin UTXOs.

Programmability exists to do one thing: enable apps. Charms apps can implement:
o fungible and non-fungible tokens,

¢ DEXes, auctions and lending protocols,

e .. you (create and) name it.

App state needs to be stored somehow, and that’s what charms (as tokens) are for.

A single charm is a token, NFT or, generally, a fragment of app state pertaining to a particular
output. Structurally, it is an entry of a mapping app -> data on top of a Bitcoin UTXO. You
can have as many as you want such entries, creating a string of charms (a Charms output).

Combining tokens, NFTs and arbitrary apps in strings of charms allows for composability:

e a limit order to trade one token for another,
o artist royalty policies for NFTs

e bridging

e .. limitless other things.



A string of charms gets created or spent as one unit, just like a Bitcoin UTXO. Charms can
only exist on top of UTXOs (such outputs are said to be enchanted). Because of this, whoever
owns the Bitcoin UTXO, can do whatever they want with charms in it (even destroy them).

Fungible tokens and NFTs are treated as special cases:

« a fungible token data (the value of a charm) is its amount (a positive integer, e.g. 69420),
e NFTs carry arbitrary data.

Charms Apps are essentially predicates that Charms transactions must satisfy:
pub fn app contract(app: &App, tx: &Transaction, x: &Data, w: &Data) -> bool

In the above signature,

e app: &App refers to the app itself, so that the predicate could find the app’s own data in
the transaction,

e tx: &Transaction is the transaction for which the predicate is being evaluated,

e x: &Data — app-specific (on-chain) public input,

e w: &ata — app-specific (off-chain) private input.

We detail the datatypes below.

4.1.1 App

pub struct App {
pub tag: char,
pub identity: B32,
pub vk: B32,

}

App is a tuple of tag/identity/VK (see App) where:

e tag is a single character representing the app type (with special values: n for NFTs, t for
fungible tokens). tag can be anything (with n and t treated specially: simple transfers of
NFTs and fungible tokens don’t need app contract proofs).

e identity — a 32-byte array uniquely identifying the asset (among others with the same tag
and implementation).

e VK — a 32-byte array representing the verification key hash of the app implementing the
logic of the asset: how it can be minted or burned, staked, etc.

4.1.2 Data

Data represents any CBOR-serializable data value (must implement Serialize and
Deserialize). charms-data library provides convenient API to convert to and from the app-
specific datatype.

4.1.3 Transaction

pub struct Transaction {
/// Input UTXOs.
pub ins: BTreeMap<UtxoId, Charms>,
/// Output charms.
pub outs: Vec<Charms>,

}

In UTXO model (e.g. as in Bitcoin, Dogecoin, Cardano), transactions spend inputs (previously
created UTXOs) and create outputs (new UTXOs).

Charms transactions are no different: spend inputs, create outputs.


https://docs.rs/charms-data/0.3.0/charms_data/struct.App.html

4.1.4 Charms
pub type Charms = BTreeMap<App, Data>;

The Charms type represents the content of a Charms output or a string of charms — multiple
charms bound together (in a single UTXO). This is simply a mapping App -> Data. A single
entry of this mapping is called a charm, and it represents one asset of potentially many in a
single output.

In case of fungible tokens, Data encodes a positive integer (u64) — the amount of the fungible
token (specified by App) in the Charms output. It can be anything for other types of assets.

4.2 Spells and Proofs
Spells are the magic that creates charms.

The idea is to add some metadata to Bitcoin transactions that would tell the client software that
a transaction deals with Charms (inspired by Runes’ runestones and Ordinals’ inscriptions). We
call this metadata a spell because it “magically” enchants the transaction and creates charms.

Spells are client-side validated, meaning that the clients choose to interpret or ignore them.

A spell is said to be correct if and only if all of these are true:

e it is successfully parsed and interpreted

« makes sense for the transaction (e.g., doesn’t produce more Charms outputs than there are
Bitcoin outputs)

¢ has a valid proof

Correct spells can create, destroy and transfer charms (programmable assets). Incorrect spells
are ignored.

Double-spending is prevented by Bitcoin, so the spell’s proof only needs to prove that the spell
itself is correct. We go one step further and guarantee, that given the transaction is valid and
the spell is correct, it’s sufficient to verify the proof to ensure the spell is correct, i.e. there
is no need to traverse transaction history to make sure the transaction is dealing with
legitimate assets.

4.2.1 On-Chain Binary Representation of a Spell

A spell is included in a Taproot witness of the underlying Bitcoin transaction, in an enwvelope
— a sequence of opcodes OP_FALSE OP_IF .. (push data) .. OP_ENDIF, which is effectively a no-
op: since the condition is false, no data is pushed onto the stack.

OP_FALSE

0P _IF
OP_PUSH "spell"
OP_PUSH $spell data
OP_PUSH $proof data

OP_ENDIF

where:

e OP _PUSH "spell" shows that the envelope contains a spell.

e OP_PUSH $spell data — CBOR-encoded NormalizedSpell.

e OP PUSH $proof data — Grothl6 proof attesting to verification of correctness of the spell.


https://lightning.engineering/posts/2023-04-19-taproot-musig2-recap/
https://docs.rs/charms/0.3.0/charms/spell/struct.NormalizedSpell.html

4.2.2 Structure of a Spell
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A spell consists of:

e the protocol version

« the transaction (see NormalizedTransaction below)
» inputs,
» outputs

¢ public inputs for all involved apps

4.2.3 NormalizedSpell

pub struct NormalizedSpell {

pub version: u32,

pub tx: NormalizedTransaction,

pub app_public_inputs: BTreeMap<App, Data>,
}

NormalizedSpell encodes the spell structure in normalized form (to minimize size). The involved
Apps are enumerated in app_public_inputs (with potentially empty Data). Since it is a sorted
map, we can use the App’s integer index to refer to the App within the spell.

4.2.4 NormalizedTransaction

pub struct NormalizedTransaction {
pub ins: Option<Vec<UtxoId>>,
pub outs: Vec<NormalizedCharms>,

10



pub beamed outs: Option<BTreeMap<u32, B32>>,
}

NormalizedTransaction is the normalized encoding of a Transaction (to minimize size).

ins field is optional because a spell is a metadata of a Bitcoin transaction: we can easily recover
the list of input UTXO IDs from the underlying transaction.

outs is a list of Charms outputs, where each is encoded as NormalizedCharms.

beamed outs is discussed in the Beaming Charms section below.

4.2.5 NormalizedCharms
pub type NormalizedCharms = BTreeMap<usize, Data>;

NormalizedCharms represents a string of charms within a NormalizedSpell with Apps replaced
by integer indexes (in NormalizedSpell.appipubliciinputs).

4.2.6 Proof

Spell proof is recursive: it’s a Groth16 proof of successful run of a zkVM program that verifies:

e the spell is well-formed

o the transaction satisfies all involved app contracts

« all spells from pre-requisite transactions (i.e. those creating the UTXOs we're spending)
are correct

5 Recursive zkVM Proofs
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cETH_ contract(cETH__app, tx_ 3, null, null) == true
cADA_ contract(cADA__app, tx_ 3, null, null) == true
c¢BOS_ contract(cBOS__app, tx_ 3, null, null) == true
cUSD__contract(cUSD__app, tx_ 3, null, null) == true
c¢BTC_ contract(cBTC__app, tx_ 3, null, null) == true

MemePic__contract(one_simply_app, tx_ 3, null, null) == true
is_spell_correct(tx_1) == true
is_spell__correct(tx_2) == true :

As we mentioned, spell proofs are recursive: a correct spell proof attests to
o verifying the spell is well-formed

o verifying app contract proofs

o verifying pre-requisite spell proofs < this is the recursive part

This removes the need to traverse transaction history to confirm that the charms spent by a
transaction were indeed there. So, with a single Groth16 proof verification, we know if charms
in transaction outputs are good.
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5.1 Spell is Well-formed
The following must hold for a spell to be well-formed.

e Protocol version is the one current one supported by the software.

o Apps from all input and output charms are listed (with their public inputs) and only those
apps are listed.

e There are no indexes in normalized charms outside the list of apps (higher than
number_of_apps - 1).

5.2 App Contract Proofs

An app contract proof is a zkVM proof that the app contract is satisfied by the transaction. The
app (compiled to a RISC-V binary) is run by the zkVM, and the proof that it runs successfully
is generated, with the following public and private inputs.

Public inputs:

e App
e Transaction

e x: Data — additional app-specific public input

Private inputs:
e w: Data — app-specific private input

These proofs are then verified against the app verification key (app.vk) when constructing
spell proofs.

There are two special cases that don’t require presenting app proofs:
o simple transfer of fungible tokens,
o simple transfer of NFTs.

Fungible tokens are implemented by Apps with tag 't' (app.tag == TOKEN). NFTs are
implemented by Apps with tag 'n' (app.tag == NFT).

Simple transfer of a fungible token means, the total amount of the fungible token in input
charms and output charms of a transaction is exactly the same.

Simple transfer of an NFT means that the NFT stays exactly the same in an output as it was
in an input of the transaction.

5.3 Spell Proofs

Charms software includes a program charms-spell-checker compiled to RISC-V binary and run
in a zkVM. The proof that it runs successfully is generated and then wrapped into a Groth16
proof, with the following public and private inputs.

Public inputs:
e Spell VK — the recursive spell verification key. It is used to verify pre-requisite spell proofs.
¢ NormalizedSpell — the spell being checked in normalized form.

Private inputs:

e app contract proofs — proofs that app contracts are satisfied by this spell.

e pre-requisite transactions — transactions that created Charms outputs spent or read by
this spell

App contract proofs are verified against corresponding app VKs.

12



Spells and their proofs from pre-requisite transactions are extracted and verified against the
spell VK.

5.4 Protocol Upgradability

Spells have version field, informing which spell VK to use when verifying the spell proof. Known
versions and corresponding spell VKs are known constants (within the Charms software which
is open source).

When a prerequisite transaction has a spell with a known protocol version, it is parsed
accordingly and its proof is verified against the spell VK for that version.

This enables simple and transparent upgradability of the protocol.

6 Beaming Charms

The meta-protocol design decoupled from the underlying blockchain empowers Charms to move
to other chains (and back to Bitcoin). We call this capability beaming as it reminds of transport
beaming depicted in Star Trek, where people or objects would disappear completely from one
place (say, on some planet) and fully materialize in a different place (say, the transporter room
of starship Enterprise).

6.1 Datatype Support

NormalizedTransaction has an optional field beamed_outs to mark Charms outputs (strings
of Charms) as beamed to other chains. The keys are indices of the beamed outputs (in this
NormalizedTransaction), and the values are SHA256 hashes of destination UTXO IDs on the
target blockchains.

pub struct NormalizedTransaction {
pub ins: Option<Vec<UtxoId>>,
pub outs: Vec<NormalizedCharms>,

/// Mapping from the output index to the destination UTXO0 ID hash.
pub beamed outs: Option<BTreeMap<u32, B32>>,
}

This signals that charms are no longer assigned to the output. They cannot be “unlocked”,
because they are not here anymore.

6.1.1 Protocol
The protocol is executing a transfer of assets from chain B (e.g. Bitcoin) to chain C (e.g.
Cardano).

(i) on chain C: create a “placeholder” UTXO (or the destination UTXO)
e transactions creating such outputs don’t carry any spells
e do not spend this UTXOs yet!

(ii) on chain B: create a Charms output that is being “beamed” to chain C — added to the
mapping in beamed_outs with the hash of the “placeholder” UTXO ID on destination chain
C (created in step 0).

After these steps, the Charms output can be considered moved to chain C and is good to be
spent there.

(iii) A spell spending such output on chain C is correct if and only if it has a proof that:

13



a transaction on chain C has created the beam destination output (this is taken care

of by the underlying blockchain),

e the spell would be correct without the beaming if the charms were put in the beam
destination UTXO directly on chain C,

« a correct spell on chain B (with valid proof) created the output with a corresponding
entry in beamed_outs with the hash of the destination UTXO ID on chain C,

o the beaming transaction (on chain B) is included in the main branch of the blockchain

history.

To prove transaction inclusion in the main branch on Bitcoin, we can provide
e Merkle proof of transaction inclusion in a block,
« proof of sufficient work performed on top of the block (to mine subsequent blocks).

We can visualize this process as:
(i) a transaction on the destination chain (C) create “placeholder” for Charms to be sent to,
(ii) a transaction on the source chain (B) beams the Charms into their “placeholder” (on the

destination chain, C).

BEAM ME UP SCOTTY!

<)

6.1.2 Effect on Apps
App contracts don’t care about chains: there are no mentions of any chains (neither B, nor
C) in app contract code. UtxoIld struct (which is used in app contracts) has the same format
regardless of the chain.

Thus apps become cross-chain without trying to become cross-chain.
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6.1.3 Additional Considerations

If multiple strings of charms are sent to a single UTXO on the target chain, only one of
them can be spent. The spending transaction decides which one. The other ones are effectively
destroyed.

7 How it Works Put Together

The full cycle of building a Charms app (e.g. a Bitcoin backed stablecoin) looks something
like this:

(i) Run charms app new shiny-new-token in your shell, and get a fully buildable Rust project
that can be customized to whatever it needs to do.

(ii) Build the app contract functionality. The only limit is the signature of the entry point
function, the app contract predicate. Standard Rust can be used, no compromises. Use
charms app build to compile the app to the zkVM-ready RISC-V binary.

(iii) Test the app contracts with charms app run against different potential spells you anticipate.

(iv) Build front-end and back-end of the app and interact with Charms’ Rust or web APIs (or
the CLI) to generate spell proofs and embed them into Bitcoin transactions to be signed
by users’ wallets.

(v) Profit!

(vi) Go cross-chain without changing a line of code in app contracts.

(vii) More profit.

Operation flow for Charms apps (which also hints at why Charms app implementations are

called app contracts) is the following:

(i) Create your transaction / spell. It can do anything, as long as is satisfies the app
contracts for all involved charms.

(ii) Generate the zkVM proof that the spell is correct using Charms library, API or CLI.
In order to do this, provide previous transactions, plus proofs of inclusion for those on
different chains. The result is a transaction (enhanced with the spell and proof, or dare we
say, enchanted) ready to sign and submit to the blockchain.

(iii) Sign and submit the transaction.

The above flow is very similar to interaction with UTXO blockchains in general, with the only
difference that validation happens off-chain and is attested to by a zkVM proof.

8 What’s Next

8.1 Wasm App Contracts
Currently, Charms apps are written in Rust and compiled to RISC-V ELF binaries — to be
run and generate proofs by a zkVM.

RISC-V ELF is a popular choice of CPU architecture and binary format among zkVM vendors,
which means that currently only Rust can practically be used to implement Charms app
contracts.

We will continue using Rust to build Charms (it is fantastic as a systems programming
language), but we also want to lower the barrier for app developers, and therefore will look into
using Wasm (WebAssembly) as the binary format for Charms apps.

We will work with zkVM vendors to achieve this.
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8.2 Charms as Native Tokens on Smart UTXO Chains

If the destination chain has smart contracts (token policies and locking scripts) that can verify
SNARK proofs over a pairing-friendly elliptic curve, such as BLS12-381 (which Cardano does),
it is possible for Charms tokens (both fungible and non-fungible) exist on that chain as native
tokens.

We will briefly describe how this would work on Cardano.

8.2.1 Charms as Cardano Native Tokens (CNTs)
On the high level, the end goal is:

e when Charms tokens are transferred to Cardano (in a wallet supporting both Bitcoin and
Cardano), they show up on Cardano as CNTs:
» when beamed to Cardano, tokens are minted as CNTs
» when beamed from Cardano, they are burned

o when Cardano tokens are transferred to Bitcoin (or other Charms-enabled chains), they are
treated in a similar fashion:
» tokens are locked on the Cardano side and minted as Charms
» when transferred back, they are burned as Charms and unlocked on Cardano

The idea is to use a proxy Cardano token policy for Charms tokens. This token policy will allow
minting and burning tokens based on verification of a ZK proof of the transaction in question
satisfying the Charms tokens’ app contracts.

We will also introduce a proxy spending script for Charms apps to act as Cardano smart
contracts. It will effectively introduce portable zkVM based smart contracts (implemented in
Rust) to Cardano.

We also need a proxy Charms app for original Cardano tokens coming to Charms. Minting and
burning of original CNTs is only possible when they are operated natively on Cardano. Aside
from minting and burning, original CN'Ts are going to be fully operational as Charms tokens
on any Charms-enabled blockchains.

8.3 More Chains

More than $80bn total market cap is in UTXO-based blockchains other than Bitcoin, including
the largest ones, Dogecoin ( $34bn), Cardano ($27bn). About half (the smallest chain being
larger than $6bn in market cap) allow storing sufficient additional data in transactions (as
evidenced by existence of their respective versions of Ordinals) to be able to carry a Charms
spell (and proof). We are looking to build Charms support for these blockchains.

9 Use Cases

The revolutionary capabilities of Charms enable entirely new categories of blockchain
applications. Here we explore three transformative use cases that showcase the protocol’s
potential to reshape both Bitcoin functionality and broader Web3 interoperability.

9.1 Unchained Bitcoin (xBTC)

We can wrap BTC into a Charms token - xBTC - introducing two groundbreaking upgrades to
the world’s largest digital asset.

First, xBTC brings programmability to BTC, much like how wETH enabled smart contract
functionality for ETH. This allows BTC holders to participate in advanced DeFi applications
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and smart contract interactions that were previously impossible with native BTC - directly
upon the Bitcoin ledger.

Second, xBTC eliminates the need for traditional bridging infrastructure to move BTC between
chains. Once BTC is locked and xBTC is minted, the token can move freely between any
Charms-integrated chains without requiring additional locking or minting operations. This
dramatically reduces friction compared to conventional bridging solutions that require separate
infrastructure for each chain pair. Finally, this opens avenues for less trusted methods of moving
BTC between chains - particularly for chains that cannot verify external events, including
Litecoin and Dogecoin.

The result is a truly portable BTC that maintains its security while gaining unprecedented
functionality and cross-chain mobility.

9.2 Decentralized Bitcoin Onramp
Charms could revolutionize bitcoin acquisition by creating a decentralized, peer-to-peer,
censorship-resistant onramp that sidesteps traditional KYC requirements.

This system would enable users to purchase xBTC (a wrapped BTC implemented as a Charm)
directly paying with, say, CashApp without any intermediary’s knowledge. When a buyer sends
cash via CashApp, the system leverages zero-knowledge proofs to cryptographically verify the
transaction occurred without revealing personal details.

Once verified, a Cardano smart contract automatically releases the equivalent xBTC from
sellers’ escrowed funds to the buyer. The platform processes what appears to be regular peer-to-
peer transfers, so CashApp isn’t aware it is processing a P2P Bitcoin purchase. This creates a
truly private, non-KYC pathway to Bitcoin ownership that embodies core cypherpunk principles
of financial privacy and freedom from surveillance.

9.3 Self-Auditing Stablecoin

Charms’ ability to verify off-chain information through zero-knowledge proofs enables an
entirely new category of transparent, verifiable stablecoins. Consider a stablecoin that can
only mint new tokens when it has cryptographically verified sufficient backing in a traditional
financial account.

For example, a stablecoin could be programmed to verify the balance of a custodian’s CashApp
account, before allowing any new minting. While this doesn’t eliminate custodial risk entirely,
it provides:

¢ Real-time verification of backing assets

e Transparent proof of reserves

e Automated compliance with backing requirements
¢ Reduced trust assumptions around custody

This creates a new standard for stablecoin transparency and verification, where backing can be
continuously monitored and proven rather than relying solely on periodic attestations.

These examples represent just a fraction of what’s possible with Charms. As the protocol
matures and more developers begin building with it, we expect to see an explosion of innovative
applications that leverage Charms’ unique capabilities to create more secure, interoperable, and
powerful blockchain solutions.
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10 Conclusion

We have presented Charms — a programmable asset protocol for enchanting Bitcoin alongside
other UTXO-based ledgers (like Cardano).

By using recursive zkVM proofs, client-side validation, and a novel Extended UTXO model,
Charms straps Bitcoin with an unchained and secure metalayer for building the decentralized
internet of value. Charms doesn’t just give Bitcoin apps — it makes Bitcoin omniscient.

This is made possible by advancements in zkVM technology that powers our recursive ZK
proofs, eliminating the need to traverse blockchain transaction history. This allows clients to
be very thin and removes the need for indexers (for the purpose of validating transactions) or
any infrastructure other than the underlying blockchain.

By bootstrapping Charms on Cardano’s dApp ecosystem, we empower developers to build freely
— with Cardano projects becoming the first to explore this new programmable frontier. As
the rest of the crypto industry collapses inward toward Bitcoin’s gravity, Cardano becomes
the launchpad.

Our short-term development goals are to migrate to Wasm as the binary format for app
contracts, opening up to the broader app/web2 developer community, finish implementing
Charms integration with Cardano native tokens and begin expansion to other UTXO chains
(like Litecoin and Dogecoin).

Charms is the culmination of years of evolution in UTXO-based smart contracts. It’s not a
bridge, nor a Layer 2, but a new paradigm — the unchained token standard.
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